首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   3篇
  国内免费   9篇
安全科学   6篇
废物处理   20篇
环保管理   20篇
综合类   32篇
基础理论   33篇
污染及防治   85篇
评价与监测   14篇
社会与环境   5篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   8篇
  2014年   5篇
  2013年   20篇
  2012年   4篇
  2011年   20篇
  2010年   19篇
  2009年   20篇
  2008年   13篇
  2007年   15篇
  2006年   10篇
  2005年   9篇
  2004年   12篇
  2003年   4篇
  2002年   8篇
  2001年   7篇
  2000年   1篇
  1999年   1篇
  1991年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有215条查询结果,搜索用时 953 毫秒
101.
The genotypic and phenotypic processes were incorporated into one system in the gene-individual-population relationships under the framework of Individual based models (IBMs). The gene types addressing different degrees of metabolic efficiency and toxin susceptibility were provided as attributes in the individuals. Subsequently ecological processes such as food competition and movement were allowed concurrently on the 2-D space to determine the suitable species adapted to the system. The integrative gene-individual-population model accordingly responded to gene exchanges between the neighboring individuals through conjugation. At a substantially low level of gene exchange, system heterogeneity increased to produce high levels of eco-exergy, being presented by species diversity and total population size in the system. The issues related to genetic and ecological effects in the integrative gene-individual-population relationships were further discussed.  相似文献   
102.
Determining the amount and rate of degradation of toxic pollutants in soil and groundwater is difficult and often requires invasive techniques, such as deploying extensive monitoring well networks. Even with these networks, degradation rates across entire systems cannot readily be extrapolated from the samples. When organic compounds are degraded by microbes, especially nitrifying bacteria, oxides or nitrogen (NOx) are released to the atmosphere. Thus, the flux of nitric oxide (NO) from the soil to the lower troposphere can be used to predict the rate at which organic compounds are degraded. By characterizing and applying biogenic and anthropogenic processes in soils the rates of degradation of organic compounds. Toluene was selected as a representative of toxic aromatic compounds, since it is inherently toxic, it is a substituted benzene compound and is listed as a hazardous air pollutant under Section 12 of the Clean Air Act Amendments of 1990. Measured toluene concentrations in soil, microbial population growth and NO fluxes in chamber studies were used to develop and parameterize a numerical model based on carbon and nitrogen cycling. These measurements, in turn, were used as indicators of bioremediation of air toxic (i.e. toluene) concentrations. The model found that chemical concentration, soil microbial abundance, and NO production can be directly related to the experimental results (significant at P < 0.01) for all toluene concentrations tested. This indicates that the model may prove useful in monitoring and predicting the fate of toxic aromatic contaminants in a complex soil system. It may also be useful in predicting the release of ozone precursors, such as changes in reservoirs of hydrocarbons and oxides of nitrogen. As such, the model may be a tool for decision makers in ozone non-attainment areas.  相似文献   
103.
Organosolv lignin was treated with ethanol at sub/supercritical temperatures (200, 275, and 350 °C) for conversion to low molecular phenols under different reaction times (20, 40, and 60 min), solvent-to-lignin ratios (50, 100, and 150 mL g−1), and initial hydrogen gas pressures (2 and 3 MPa). Essential lignin-degraded products, oil (liquid), char (solid), and gas were obtained, and their yields were directly influenced by reaction conditions. In particular, concurrent reactions involving depolymerization and recondensation as well as further (secondary) decomposition were significantly accelerated with increasing temperature, leading to both lignin-derived phenols in the oil fraction and undesirable products (char and gas).  相似文献   
104.
Remanufacturing, in contrast to material recycling and disposal, can reduce environmental impacts by retaining the geometrical form of the product, thereby regarded as a more eco-efficient approach. In this paper, an end-of-life (EOL) decision model for remanufacturing options is presented to facilitate remanufacturing. The proposed model, in order to maximize the economic value of remanufacturing options while meeting environmental regulations, takes an integrative approach to EOL-option decision-making. Also presented in this paper is a hierarchical approach that represents both the overall hierarchical structure of a product and the interconnections among components. Illustrative examples are provided to demonstrate the effectiveness of the model.  相似文献   
105.
Lee J  Lee BC  Ra JS  Cho J  Kim IS  Chang NI  Kim HK  Kim SD 《Chemosphere》2008,71(8):1582-1592
The removal efficiency of endocrine disrupting compounds from effluents using pilot scale sewage treatment processes, including various treatment technologies, such as membrane bioreactors (MBR), nanofiltration (NF) and reverse osmosis (RO) for the purpose of water reuse, were estimated and compared. The calculated estrogenic activity, expressed in ng-EEQ/l, based on the concentration detected by GC/MS, and relative potencies for each target compound were compared to those measured using the E-screen assay. The removal efficiencies for nonylphenol, was within the range of 55-83% in effluents. High removal efficiencies of approximately >70% based on the detection limits were obtained for bisphenol A, E1, EE2 and genistein with each treatment processes, with the exception of E1 ( approximately 64%) using the MBR process. The measured EEQ values for the effluents from the MBR, NF and RO processes also indicated low estrogenic activities of 0.65, 0.23 and 0.05 ng-EEQ/l, respectively. These were markedly reduced values compared with the value of 1.2 ng-EEQ/l in influent. Consequently, the removals of EDCs in terms of the EEQ value from the biological and chemical determinations were sufficiently achieved by the treatment process applied in this study, especially in the cases of the NF and RO treatments.  相似文献   
106.
The RAM model provided by the U.S. EPA has been applied to the metropolitan Detroit area for SO2 concentrations and is compared to concentrations predicted by a numerical model and to field data obtained by the 14 station air sampling network maintained by the Wayne County Air Pollution Control Division. Great care was taken to develop the emission inventory. Based upon examination of the temporal and spatial correspondence of the respective model predictions and observed concentrations, the correlation coefficients for the 24-hour averaged data, the correlation coefficients for over 700 3-hour averaged observations, and the cumulative frequency distributions of the model output and observations, it is concluded that the numerical model provides a superior predictive tool to evaluate cause and effect relations, but that the RAM model, at far lower cost, predicts the correct magnitude of the worst events. Hence RAM might well be used in the Detroit Area for statistically based regulatory decisions.  相似文献   
107.
A study on tropospheric aerosols involving Fe particles with an industrial origin is tackled here. Aerosols were collected at the largest exhausts of a major European steel metallurgy plant and around its near urban environment. A combination of bulk and individual particle analysis performed by SEM–EDX provides the chemical composition of Fe-bearing aerosols emitted within the factory process (hematite, magnetite and agglomerates of these oxides with sylvite (KCl), calcite (CaCO3) and graphite carbon). Fe isotopic compositions of those emissions fall within the range (0.08‰ < δ56Fe < +0.80‰) of enriched ores processed by the manufacturer (−0.16‰ < δ56Fe < +1.19‰). No significant evolution of Fe fractionation during steelworks processes is observed. At the industrial source, Fe is mainly present as oxide particles, to some extent in 3–4 μm aggregates. In the close urban area, 5 km away from the steel plant, individual particle analysis of collected aerosols presents, in addition to the industrial particle type, aluminosilicates and related natural particles (gypsum, quartz, calcite and reacted sea salt). The Fe isotopic composition (δ56Fe = 0.14 ± 0.11‰) measured in the close urban environment of the steel metallurgy plant appears coherent with an external mixing of industrial and continental Fe-containing tropospheric aerosols, as evidenced by individual particle chemical analysis. Our isotopic data provide a first estimation of an anthropogenic source term as part of the study of photochemically promoted dissolution processes and related Fe fractionations in tropospheric aerosols.  相似文献   
108.
Cho, Jaepil, Richard R. Lowrance, David D. Bosch, Timothy C. Strickland, Younggu Her, and George Vellidis, 2010. Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):586-602. DOI: 10.1111/j.1752-1688.2010.00436.x Abstract: The Soil and Water Assessment Tool (SWAT) does not fully simulate riparian buffers, but has a simple filter function that is responsive to filter strip width (FILTERW). The objectives of this study were to (1) evaluate SWAT hydrology and water quality response to changes in watershed subdivision levels and different FILTERW configurations and (2) provide guidance for selecting appropriate watershed subdivision for model runs that include the riparian buffer feature through the FILTERW parameter. Watershed subdivision level is controlled by the critical source area (CSA) which defines the minimum drainage area required to form the origin of a stream. SWAT was calibrated on a 15.7 km2 subdrainage within the Little River Experimental Watershed, Georgia. The calibrated parameter set was applied to 32 watershed configurations consisting of four FILTERW representations for each of eight CSA levels. Streamflow predictions were stable regardless of watershed subdivision and FILTERW configuration. Predicted sediment and nutrient loads from upland areas decreased as CSA increased when spatial variations of riparian buffers are considered. Sediment and nutrient yield at the watershed outlet was responsive to different combinations of CSA and FILTERW depending on selected in-stream processes. CSA ranges which provide stable sediment and nutrient yields at the watershed outlet was suggested for avoiding significant modifications in selected parameter set.  相似文献   
109.
This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction (R(j)) vs. mass reduction (R(m)) relationships (R(j)(R(m))): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the R(j)(R(m)) relationship. All of the single-flushing experiments exhibited similar R(j)(R(m)) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The R(j)(R(m)) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less R(j) for a given R(m). UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict R(j)(R(m)) relationships for non-uniformly distributed NAPL sources.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号